MESQUAL Membership Property Enrichers¶
MembershipTagging
¶
Bases: Enum
Controls how enriched property names are tagged when added to target DataFrames.
In energy system modeling, objects often have relationships to other model components (e.g., generators belong to nodes, lines connect nodes). When enriching a DataFrame with properties from related objects, this enum controls naming conventions to avoid column name conflicts and maintain clarity about property origins.
Values
- NONE: Property names remain unchanged (may cause conflicts with existing columns)
- PREFIX: Property names get membership name as prefix (e.g., 'node_voltage' from 'voltage')
- SUFFIX: Property names get membership name as suffix (e.g., 'voltage_node' from 'voltage')
Examples:
For a generator DataFrame (target_df) with 'node' membership, enriching with node properties:
>>> MembershipPropertyEnricher().append_properties(target_df, dataset, MembershipTagging.NONE)
>>> # Returns target_df with new columns ['voltage', 'load'] (original names from node DataFrame)
>>>
>>> MembershipPropertyEnricher().append_properties(target_df, dataset, MembershipTagging.PREFIX)
>>> # Returns target_df with new columns ['node_voltage', 'node_load']
>>>
>>> MembershipPropertyEnricher().append_properties(target_df, dataset, MembershipTagging.SUFFIX)
>>> # Returns target_df with new columns ['voltage_node', 'load_node']
Source code in submodules/mesqual/mesqual/energy_data_handling/model_handling/membership_property_enrichers.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | |
MembershipPropertyEnricher
¶
Enriches energy system DataFrames with properties from related model objects.
In energy system modeling, entities often have membership relationships to other model components. For example: - Generators belong to nodes and have fuel types - Lines connect between nodes - Storage units are located at nodes and have technology types
This enricher automatically identifies membership columns in a target DataFrame and adds all properties from the corresponding model DataFrames. This enables comprehensive analysis by combining object properties with their relationships.
Key Features: - Automatic identification of membership columns using MESQUAL's flag index system - Support for multiple simultaneous memberships (node, fuel_type, company, etc.) - Preservation of NaN memberships in enriched data - Configurable property naming to avoid column conflicts - Integration with MESQUAL Dataset architecture
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
membership_tag_separator
|
str
|
Separator used between membership name and property when PREFIX or SUFFIX tagging is applied |
'_'
|
Examples:
>>> enricher = MembershipPropertyEnricher()
>>> # Generator DataFrame with 'node' column linking to node objects
>>> enriched_gen_df = enricher.append_properties(
... generator_df, dataset, MembershipTagging.PREFIX
... )
>>> # enriched_gen_df now includes 'node_voltage', 'node_area' columns from node properties
Source code in submodules/mesqual/mesqual/energy_data_handling/model_handling/membership_property_enrichers.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | |
__init__
¶
__init__(membership_tag_separator: str = '_')
Initialize the membership property enricher.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
membership_tag_separator
|
str
|
Character(s) used to separate membership names from property names in PREFIX/SUFFIX modes |
'_'
|
Source code in submodules/mesqual/mesqual/energy_data_handling/model_handling/membership_property_enrichers.py
77 78 79 80 81 82 83 84 85 | |
identify_membership_columns
¶
identify_membership_columns(column_names: list[str], dataset: Dataset) -> list[str]
Identifies columns that represent memberships to other model objects.
Uses MESQUAL's flag index system to determine which columns in the target DataFrame represent relationships to other model components. This enables automatic discovery of enrichment opportunities without manual specification.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
column_names
|
list[str]
|
List of column names from the target DataFrame |
required |
dataset
|
Dataset
|
MESQUAL Dataset containing model definitions and flag mappings |
required |
Returns:
| Type | Description |
|---|---|
list[str]
|
List of column names that represent memberships to other model objects |
Examples:
For a generator DataFrame with columns ['name', 'capacity', 'node', 'fuel_type']:
>>> membership_cols = enricher.identify_membership_columns(
... generator_df.columns, dataset
... )
>>> print(membership_cols) # ['node', 'fuel_type']
Source code in submodules/mesqual/mesqual/energy_data_handling/model_handling/membership_property_enrichers.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | |
append_properties
¶
append_properties(target_df: DataFrame, dataset: Dataset, membership_tagging: MembershipTagging = NONE) -> DataFrame
Enriches target DataFrame with properties from all linked model objects.
Performs comprehensive enrichment by automatically identifying all membership relationships and adding corresponding properties. This is the primary method for energy system DataFrame enrichment, enabling complex multi-dimensional analysis by combining object properties with their relationships.
The method preserves all original data while adding new property columns. Missing relationships (NaN memberships) are handled gracefully by preserving NaN values in the enriched properties.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
target_df
|
DataFrame
|
DataFrame to enrich (e.g., generator, line, storage data) |
required |
dataset
|
Dataset
|
MESQUAL Dataset containing linked model DataFrames with properties |
required |
membership_tagging
|
MembershipTagging
|
Strategy for naming enriched properties to avoid conflicts |
NONE
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
Enhanced DataFrame with all properties from linked model objects added. |
DataFrame
|
Original columns are preserved, new columns added based on memberships. |
Raises:
| Type | Description |
|---|---|
Warning
|
Logged when membership objects are missing from source DataFrames |
Examples:
Energy system use cases:
>>> # Enrich generator data with node and fuel properties
>>> enriched_generators = enricher.append_properties(
... generators_df, dataset, MembershipTagging.PREFIX
... )
>>> # Result: original columns + 'node_voltage', 'node_area', 'fuel_co2_rate', etc.
>>> # Enrich transmission data with node characteristics
>>> enriched_lines = enricher.append_properties(
... transmission_df, dataset, MembershipTagging.SUFFIX
... )
>>> # Result: line properties + node properties with '_node' suffix
Source code in submodules/mesqual/mesqual/energy_data_handling/model_handling/membership_property_enrichers.py
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | |
append_single_membership_properties
¶
append_single_membership_properties(target_df: DataFrame, dataset: Dataset, membership_column: str, membership_tagging: MembershipTagging = NONE) -> DataFrame
Enriches target DataFrame with properties from a specific membership relationship.
This method provides fine-grained control over property enrichment by handling a single membership column. Useful when custom logic is needed for specific relationships or when processing memberships sequentially with different tagging strategies.
The method uses MESQUAL's flag index to determine the source model DataFrame for the membership column, then performs a left join to preserve all target records while adding available properties.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
target_df
|
DataFrame
|
DataFrame to enrich (must contain the membership column) |
required |
dataset
|
Dataset
|
MESQUAL Dataset with access to linked model DataFrames |
required |
membership_column
|
str
|
Name of column containing object references (e.g., 'node', 'fuel_type') |
required |
membership_tagging
|
MembershipTagging
|
Strategy for naming enriched properties |
NONE
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
DataFrame with properties from the linked model objects added. |
DataFrame
|
All original rows preserved; NaN memberships result in NaN properties. |
Raises:
| Type | Description |
|---|---|
Warning
|
Logged when referenced objects are missing from the source DataFrame |
Examples:
Targeted enrichment scenarios:
>>> # Add only node properties to generators
>>> gen_with_nodes = enricher.append_single_membership_properties(
... generators_df, dataset, 'node', MembershipTagging.PREFIX
... )
>>> # Result: generators + 'node_voltage', 'node_area', etc.
>>> # Sequential enrichment with different tagging
>>> result = generators_df.copy()
>>> result = enricher.append_single_membership_properties(
... result, dataset, 'node', MembershipTagging.PREFIX
... )
>>> result = enricher.append_single_membership_properties(
... result, dataset, 'fuel_type', MembershipTagging.SUFFIX
... )
Source code in submodules/mesqual/mesqual/energy_data_handling/model_handling/membership_property_enrichers.py
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 | |
DirectionalMembershipPropertyEnricher
¶
Enriches energy system DataFrames with properties for directional relationships.
Energy networks inherently contain directional relationships - transmission lines connect from one node to another, flows have origins and destinations, and trade occurs between regions. This enricher handles such bidirectional memberships by identifying from/to column pairs and enriching with appropriate directional tags.
Common energy system applications: - Transmission lines: 'node_from' and 'node_to' linking to node properties - Inter-regional flows: 'region_from' and 'region_to' for trade analysis - Pipeline systems: 'hub_from' and 'hub_to' for gas network modeling - Market connections: 'market_from' and 'market_to' for price analysis
The enricher automatically identifies directional column pairs using configurable identifiers (default: '_from' and '_to') and adds properties from the linked model objects with appropriate directional suffixes.
Key Features
- Automatic identification of from/to column pairs
- Flexible directional identifiers (customizable beyond '_from'/'_to')
- Support for multiple directional relationships in one DataFrame
- Preservation of NaN relationships
- Integration with MESQUAL's model flag system
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
from_identifier
|
str
|
Suffix/prefix identifying 'from' direction (default: '_from') |
'_from'
|
to_identifier
|
str
|
Suffix/prefix identifying 'to' direction (default: '_to') |
'_to'
|
membership_tag_separator
|
str
|
Separator for property name construction |
'_'
|
Examples:
>>> enricher = DirectionalMembershipPropertyEnricher()
>>> # Line DataFrame with 'node_from', 'node_to' columns
>>> enriched_lines = enricher.append_properties(
... line_df, dataset, MembershipTagging.NONE
... )
>>> # Result includes node properties with '_from' and '_to' suffixes
Source code in submodules/mesqual/mesqual/energy_data_handling/model_handling/membership_property_enrichers.py
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 | |
__init__
¶
__init__(from_identifier: str = '_from', to_identifier: str = '_to', membership_tag_separator: str = '_')
Initialize the directional membership property enricher.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
from_identifier
|
str
|
String identifying source/origin columns (e.g., 'from', 'source') |
'_from'
|
to_identifier
|
str
|
String identifying destination/target columns (e.g., 'to', 'dest') |
'_to'
|
membership_tag_separator
|
str
|
Character(s) separating membership names from properties |
'_'
|
Source code in submodules/mesqual/mesqual/energy_data_handling/model_handling/membership_property_enrichers.py
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 | |
identify_from_to_columns
¶
identify_from_to_columns(column_names: list[str], dataset: Dataset) -> list[str]
Identifies base names for directional membership column pairs.
Analyzes column names to find base membership types that have both 'from' and 'to' variants. For example, identifies 'node' as a base when both 'node_from' and 'node_to' columns exist and represent valid memberships.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
column_names
|
list[str]
|
List of column names from the target DataFrame |
required |
dataset
|
Dataset
|
MESQUAL Dataset for membership validation |
required |
Returns:
| Type | Description |
|---|---|
list[str]
|
List of base column names that have both from/to variants |
Examples:
For a line DataFrame with ['name', 'capacity', 'node_from', 'node_to']:
>>> base_columns = enricher.identify_from_to_columns(
... line_df.columns, dataset
... )
>>> print(base_columns) # ['node']
For inter-regional trade with ['flow', 'region_from', 'region_to', 'market_from']:
>>> base_columns = enricher.identify_from_to_columns(
... trade_df.columns, dataset
... )
>>> print(base_columns) # ['region'] (market missing 'market_to')
Source code in submodules/mesqual/mesqual/energy_data_handling/model_handling/membership_property_enrichers.py
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | |
append_properties
¶
append_properties(target_df: DataFrame, dataset: Dataset, membership_tagging: MembershipTagging = NONE) -> DataFrame
Enriches DataFrame with properties from all directional relationships.
Performs comprehensive directional enrichment by identifying all from/to column pairs and adding properties from both directions. Essential for network analysis where understanding characteristics of connected nodes, regions, or components is crucial for energy system modeling.
Each directional relationship results in two sets of enriched properties: one for the 'from' direction and one for the 'to' direction, clearly distinguished by directional suffixes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
target_df
|
DataFrame
|
DataFrame with directional relationships (e.g., transmission lines) |
required |
dataset
|
Dataset
|
MESQUAL Dataset containing model objects and their properties |
required |
membership_tagging
|
MembershipTagging
|
Strategy for property naming (applied before directional tags) |
NONE
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
Enhanced DataFrame with directional properties added. Original data preserved, |
DataFrame
|
new columns follow pattern: [prefix_]property_name[_suffix]_direction |
Raises:
| Type | Description |
|---|---|
Warning
|
Logged when referenced objects missing from source DataFrames |
Examples:
Network transmission analysis:
>>> # Transmission lines with node endpoints
>>> enriched_lines = enricher.append_properties(
... transmission_df, dataset, MembershipTagging.NONE
... )
>>> # Result: original columns + 'voltage_from', 'voltage_to',
>>> # 'area_from', 'area_to', etc.
>>> # Inter-regional trade flows
>>> enriched_trade = enricher.append_properties(
... trade_df, dataset, MembershipTagging.PREFIX
... )
>>> # Result: trade data + 'region_gdp_from', 'region_gdp_to', etc.
Source code in submodules/mesqual/mesqual/energy_data_handling/model_handling/membership_property_enrichers.py
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 | |
append_directional_properties_in_source_to_target_df
¶
append_directional_properties_in_source_to_target_df(target_df: DataFrame, source_df: DataFrame, base_column: str, membership_tagging: MembershipTagging = NONE) -> DataFrame
Enriches DataFrame with properties from a directional relationship.
Handles a single from/to membership pair by adding the corresponding model DataFrame's properties with directional tags.
The method processes both directions (from/to) for the specified base column, adding properties with appropriate directional suffixes. Missing references are handled gracefully with NaN preservation.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
target_df
|
DataFrame
|
DataFrame containing the directional columns |
required |
source_df
|
DataFrame
|
DataFrame containing the properties |
required |
base_column
|
str
|
Base membership name (e.g., 'node' for 'node_from'/'node_to') |
required |
membership_tagging
|
MembershipTagging
|
Property naming strategy (applied before directional tags) |
NONE
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
DataFrame with directional properties added for the specified relationship. |
DataFrame
|
Properties follow naming pattern: [prefix_]property[_suffix]_direction |
Raises:
| Type | Description |
|---|---|
Warning
|
Logged when referenced objects are missing from source DataFrame |
Examples:
Targeted directional enrichment:
>>> # Add only node properties to transmission lines
>>> lines_with_nodes = enricher.append_directional_properties(
... line_df, node_df, 'node', MembershipTagging.NONE
... )
>>> # Result: lines + 'voltage_from', 'voltage_to', 'area_from', 'area_to'
Source code in submodules/mesqual/mesqual/energy_data_handling/model_handling/membership_property_enrichers.py
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 | |