MESQUAL Pandas Util prepend_model_prop_levels¶
prepend_model_prop_levels
¶
prepend_model_prop_levels(data: Series | DataFrame, model: DataFrame, *properties, prepend_to_top: bool = True, match_on_level: str = None) -> Series | DataFrame
Prepend model properties as new index levels to data.
Searches for an index level in data that matches the model's index, then prepends specified properties from the model as new index levels.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
Series | DataFrame
|
The pandas object to add properties to. |
required |
model
|
DataFrame
|
DataFrame containing properties to prepend, with matching index. |
required |
*properties
|
Column names from model to use as new index levels. |
()
|
|
prepend_to_top
|
bool
|
If True, add properties at the beginning of index levels. If False, add at the end. |
True
|
match_on_level
|
str
|
Optional level name to constrain matching to specific level. Useful in case the there are multiple index levels in data that match the model's index |
None
|
Returns:
| Type | Description |
|---|---|
Series | DataFrame
|
Copy of data with properties prepended as new index levels. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If any property is not found in model columns. |
Energy Domain Context
In Energy Systems Analysis, you often have to groupby and aggregate by certain properties. This module makes it easy to include the properties as a new index level before performing the groupby - agg pipeline.
Example:
>>> # You have a generation time-series df
>>> print(gen_df) # Original DataFrame
generator GenA GenB GenC SolarA WindA
2024-01-01 00:00:00 100 200 150 50 80
2024-01-01 01:00:00 120 180 170 60 90
2024-01-01 02:00:00 110 190 160 55 85
>>> # You have a generator model df
>>> print(model_df)
zone technology is_res
generator
GenA DE nuclear False
GenB DE coal False
GenC FR gas False
SolarA DE solar True
WindA NL wind True
>>> gen_with_props = prepend_model_prop_levels(gen_df, model_df, 'zone', 'is_res')
>>> print(gen_with_props) # DataFrame with prepended properties
is_res False True
zone DE FR DE NL
generator GenA GenB GenC SolarA WindA
2024-01-01 00:00:00 100 200 150 50 80
2024-01-01 01:00:00 120 180 170 60 90
2024-01-01 02:00:00 110 190 160 55 85
>>> gen_by_zone_and_type = gen_with_props.T.groupby(level=['zone', 'is_res']).sum().T
>>> print(gen_by_zone_and_type) # grouped and aggregated
zone DE FR NL
is_res False True False True
2024-01-01 00:00:00 300 50 150 80
2024-01-01 01:00:00 300 60 170 90
2024-01-01 02:00:00 300 55 160 85
Source code in submodules/mesqual/mesqual/utils/pandas_utils/pend_props.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | |